UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA TÉCNICA

EXAME DE SELEÇÃO 2003/1

PROVA PARA A ÁREA DE QUÍMICA

Habilitações em Biotecnologia e Química (Analista de Processos)

MATÉRIA	QUESTÕES
Língua Portuguesa e Questão de Redação	01 a 10
M a te m á tica	11 a 20
Biologia	21 a 35
Q uím ica	36 a 50

Nome do Candidato

Número de Inscrição

COMISSÃO PERMANENTE DE SELEÇÃO

Direitos autorais reservados. Proibida a reprodução, ainda que parcial, sem autorização

LEIA COM ATENÇÃO AS INSTRUÇÕES NO VERSO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA TÉCNICA

Instruções

- Verifique se este caderno contém 50 questões. Caso contrário, solicite ao fiscal da sala outro caderno completo. Não serão aceitas reclamações posteriores.
- ◆ Leia cuidadosamente cada uma das questões, escolha a resposta certa (A, B, C, D, ou E) e assinale-a a tinta na Folha de Respotas.
- Para cada questão, existe apenas uma resposta certa. Responda a todas as questões.
- Não é permitido efetuar qualquer tipo de consulta, sujeitando-se o inobservante desta proibição à eliminação sumária do exame.
- Reclamações a respeito das instruções ou do conteúdo das questões só poderão ser feitas posteriormente à realização da prova, pela via adequada, à COPESE.
- O tempo de duração da prova é de 4 horas.

DIVULGAÇÃO DO GABARITO OFICIAL DAS PROVAS, PERÍODO RECURSAL E DIVULGAÇÃO DA LISTAGEM DOS CLASSIFICADOS					
02 de dezembro de	Divulgação do gabarito				
2002	oficial das provas				
02 e 03 de dezembro de 2002	Período Recursal				
até 20 de dezembro de	Divulgação da listagem				
2002	dos classificados				

LÍNGUA PORTUGUESA

Instrução: Responder às questões 1 a 11 com base no texto 1.

Texto 1

Destino de gaúcho

01 Um filósofo cético grego, que não via muito valor 02 na arte dos oráculos e dos astrólogos, alegava 03 muitas profecias terminavam se realizando 04 só porque o consulente, impressionado, começava 05 a agir de acordo com o que tinha sido previsto, 06 fazendo coisas que jamais teria feito se elas não 07 lhe tivessem sido anunciadas. Segundo ele, os 08 oráculos mais influenciavam do que previam a 09 realidade; não era esse o caso do pobre Édipo? Ao 10 nascer, o oráculo vaticinou que ele viria a matar o 11 próprio pai; este, ao saber disso, abandonou o bebê 12 nos montes, para que morresse. O menino, contudo, 13 foi recolhido pelo rei de Corinto e cresceu como se 14 fosse seu filho; quando chegaram a ele rumores do 15 antigo oráculo, o jovem príncipe, sem saber que era 16 adotado, fugiu da cidade, tentando colocar 17 a maior distância possível entre ele e a suposta 18 família - só para encontrar, longe dali, numa 19 encruzilhada fatal, o verdadeiro pai, matou 20 numa discussão de trânsito. Ora, se Édipo não 21 tivesse ficado sabendo da sinistra profecia, nada 22 teria acontecido, e ele teria ficado em paz em 23 Corinto, rico e feliz, amando e sendo amado por 24 seus pais adotivos. Foi o oráculo que fez acontecer 25 o que ele mesmo havia previsto... Hoje reconhecemos que nosso filósofo tinha 27 razão. As expectativas que projetamos sobre outras 28 pessoas ou sobre nós mesmos podem ter uma 29 influência enorme, às vezes decisiva, no que vier a 30 acontecer. O que eu espero (de bom ou de ruim) de 31 meu aluno vai afetar seu desempenho; isso é ainda 32 mais evidente na relação de minha mulher ou de 33 meu filho comigo. Borges, conversando com Sabato, 34 confessou que se tornou escritor por uma 35 sugestão de seu pai, que lhe disse para ser o escritor 36 que ele não tinha podido ser. "Foi meu pai que disse" 37 – assim resumiu Borges sua bela e trágica carreira. 38 É das vozes que rodeiam o berco; como as 39 fadinhas da Bela Adormecida, suas palavras 40 terminam alterando o próprio destino. Como somos humanos e imperfeitos, não 42 conseguimos nos furtar à força dessas expectativas, 43 mas podemos nos considerar afortunados se ao 44 menos pudermos distinguir para que lado elas 45 apontam, se para o céu ou para o abismo. Se os dizem que o dólar vai subir, ele sobe, porque 46 47 os cidadãos começam a comprar com medo de que 48 ele suba - e isso é ruim. Se uma voz profunda, e 49 quiçá mentirosa, vive dizendo que o gaúcho é um 50 brasileiro especial, digno, hospitaleiro e honesto,

51 vamos forcejar para que assim seja – e isso, apesar
52 de nossas misérias e imperfeições, é muito bom:
53 pode não retratar o presente, mas certamente há
54 de influir em nosso futuro.

Cláudio Moreno cmoreno@terra.com.br

- 01. As palavras que completam corretamente as lacunas do primeiro parágrafo do texto (linhas 01 a 25), na ordem em que se encontram, são
 - (A) de que as pressas ao qual

 (B) por que apressadamente à quem

 (C) de que com pressa a quem

 (D) que às pressas a quem

 (E) que de pressa que
- 02. As palavras que completam corretamente as lacunas do segundo e terceiro parágrafos do texto (linhas 26 a 54), na ordem em que se encontram, são
 - (A) cândidamente à forca especuladores cândidamente a força especuladores (B) (C) candidamente a força expeculadores (D) cândidamente à força expeculadores (E) candidamente a forca especuladores
- 03. A idéia central do texto é
 - (A) Os astrólogos e oráculos gregos nem sempre conseguiam evitar as desgraças humanas.
 - O ser humano foi e continua sendo influenciado pelas expectativas alheias.
 - Não é possível tomar decisões sem consultar os outros.
 - Édipo foi uma figura central na mitologia grega.
 - O destino de cada ser humano é desafiado por uma voz interior.

- 04. O texto pode ser corretamente caracterizado como predominantemente
 - (A) narrativo, pois conta a trágica história de Édipo.
 - (B) opinativo, pois apresenta uma tese e argumentos para sustentá-la.
 - descritivo, pois descreve detalhadamente o comportamento das pessoas.
 - (D) informativo, pois tem como objetivo informar o leitor sobre aspectos da história da Grécia antiga, relativos às escolhas que fazemos.
 - poético, pois utiliza recursos estilísticos pouco frequentes na linguagem cotidiana.
- 05. Na apresentação de suas idéias, o autor revela-se
 - (A) sectário, pois defende a idéia de que o gaúcho é um brasileiro superior aos demais.
 - (B) bem-humorado, porque faz graça dos dilemas da existência humana.
 - irônico, pois ridiculariza as fragilidades do ser humano.
 - (D) ponderado, pois apresenta seus pontos de vista sem radicalismos.
 - pessimista, porque n\u00e3o aponta sa\u00eddas para as pe\u00e7as que o destino nos prega.
- 06. A expressão "pobre" (linha 09) significa, no texto, o contrário de
 - (A) rico
 - (B) poderoso
 - (C) abonado
 - (D) afortunado
 - (E) enriquecido

- 07. Considerando o sentido do texto e as afirmativas 1 a 4, abaixo
 - "vaticinou" (linha 10) significa "profetizou".
 - 2. "suposta" (linha 17) significa "pretensa".
 - "projetamos" (linha 27) significa "prolongamos"
 - 4. "quiçá" (linha 49) significa "até mesmo".

é correto concluir que estão corretas as de número

- (A) 1e2
- (B) 1 e 3
- (C) 2 e 3
- (D) 2 e 4
- (E) 3 e 4
- 08. A expressão "nos furtar à força dessas expectativas" (linha 42) poderia ser substituída sem alteração no sentido e na estrutura do texto por
 - (A) escapar da força dessas expectativas.
 - (B) roubar com força essas expectativas.
 - (C) forçar o furto dessas expectativas.
 - (D) nos livrar perante a força dessas expectativas.
 - (E) nos proteger pela força dessas expectativas.
- 09. A forma verbal destacada em "Se uma voz (...) vive dizendo que o gaúcho (...)" (linhas 48 e 49) está exercendo papel semelhante em
 - (A) Édipo <u>viveu</u> parte de sua vida desafiando seu destino.
 - (B) Os oráculos modernos <u>vivem</u> da crença alheia.
 - (C) Ele apenas <u>vive</u>, deixando as preocupações com o futuro para lá.
 - Nosso amigo <u>vive</u> preocupado com a opinião dos outros.
 - (E) Os gaúchos vivem na porção sul do país.

- Considerando as propostas de substituição para a expressão "sem saber" (linha 15) numeradas de 1 a 5,
 - porque n\u00e3o sabia
 - embora sabendo
 - por n\u00e3o saber
 - 4. quando soube
 - não sabendo

estão corretas as possibilidades

- (A) 1, 2 e 4.
- (B) 1, 3 e 5.
- (C) 1, 2, 3, e 5.
- (D) 2.3.4e5.
- (E) 3 e 4.

REDAÇÃO

Os textos presentes nesta prova abordam aspectos que influem em situações decisivas de nossa vida.

Sua redação versará exatamente sobre este tema:

Fatores a considerar na tomada de decisões

Para desenvolver seu tema, procure primeiramente identificar fatos, experiências, expectativas, conselhos que você leva em conta ao ter de tomar uma decisão.

Após, planeje sua **dissertação**, organizando as idéias de forma coesa e coerente e sustentando-as com argumentos consistentes.

Na defesa de seus pontos de vista, você poderá valer-se de exemplos, dados da realidade, experiências pessoais. Se quiser utilizar uma breve passagem descritiva ou narrativa para dar mais credibilidade às suas idéias, poderá fazê-lo, mas lembre-se: a redação solicitada é uma dissertação, e nela devem predominar suas reflexões sobre o tema apresentado acima.

LEMBRETES:

- A redação deve ter 25 linhas no mínimo.
- As idéias devem ser expostas em linguagem culta.
- A transcrição para a folha definitiva deve ser feita a caneta.
- A redação deve ter um título.

Bom trabalho!

- 11. Se o par (a,b) é solução do sistema $\begin{cases} 5a + b = 10 \end{cases}$ então o valor de a-b é
 - -5 -2 3 6

 - (A) (B) (C) (D) (E)
- **12.** Se $27^{x+1} = 9^x$, então o valor de 10 2x é
 - (A)
 - (B) -3
 - (C)
 - (D) 16
 - (E)
- 13. Se log(x + 2) + log 2 = log x log 2, então o valor de хé

 - (C)
 - (D) $\frac{4}{3}$
 - (E)
- **14.** Se $tg\alpha = \frac{1}{2} e_{\alpha} \alpha \in \left[0; \frac{\pi}{2}\right]$, então o valor de cosα é
 - (A) -2√5
 - (B) -2
 - (C) $\frac{16}{25}$
 - (D) $\frac{2\sqrt{5}}{5}$
 - (E)

15. O produto das raízes da equação

$$\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & -1 \end{vmatrix} + \begin{vmatrix} x & x \\ 1 & x \end{vmatrix} - x^2 = 1 \quad \acute{e}$$

- (A) -4
- (B) -
- (C) -2
- (D)
- (E) 2
- 16. Considerando as matrizes

$$A=\begin{pmatrix}1&3\\-1&2\end{pmatrix}\;\;\text{e}\;\;B=\begin{pmatrix}4&0\\3&-1\end{pmatrix}\;$$
 , o produto A. B é

- (A) $\begin{pmatrix} 13 & -3 \\ 2 & -2 \end{pmatrix}$
- (B) $\begin{pmatrix} 3 & 10 \\ 4 & 7 \end{pmatrix}$
- (C) $\begin{pmatrix} 4 & 0 \\ -3 & -2 \end{pmatrix}$
- (D) $\begin{pmatrix} 4 & 12 \\ 4 & 7 \end{pmatrix}$
- (E) (-20)
- Se numa progressão aritmética a razão é 10, a diferença entre o décimo sexto e o décimo segundo termo é
 - (A) 20
 - (B) 30
 - (C) 40
 - (D) 50
 - (E) 60
- 18. Na progressão geométrica em que o sexto termo é –160 e o primeiro termo é 5, a razão é
 - (A) -6
 - (B) -4
 - (C) -2
 - (D) 2
 - (E) 4

RASCUNHO

19. As retas de equações

6x - 2y + 12 = 0 e px - 3y + 10 = 0 são paralelas se ${\boldsymbol p}$ for igual a

R

S

C U

- (A) -9
- (B) -3
- (C) 0
- (D) 9
- (E) 12

20. A razão entre a área total e a área lateral de um cilindro cujo raio é o dobro da altura é

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

UFRGS/Escola Técnica - Exame de Seleção 2003/1

0

н

BIOLOGIA

 Existem organelas celulares que podem se associar ao retículo endoplasmático para produzir proteínas, dando-lhes uma denominação especial.

Estas organelas são chamadas

- (A) cloroplastos
- (B) ribossomos
- (C) mitocôndrias
- (D) núcleo
- (E) centriolos

22.	. O aleita	amento ma	aterno é importan	te por	que a cri-
	ança	recebe	imunização	ao	ingerin
		70.000	_fabricados pela n	nãe, se	endo imu-

nizada contra a presença de causadores de doenças.

As palavras que completam corretamente as lacunas são, respectivamente,

- (A) anticorpos, antigenos.
- (B) leite, antígenos.
- (C) soro, anticorpos.
- (D) microorganismos, anticorpos.
- (E) antigenos, germes.
- 23. As três características como presença de ácidos nucléicos limitados por uma membrana, a capacidade de reprodução de forma sexuada e/ou assexuada e a possibilidade de ser autótrofo ou heterótrofo se referem a
 - (A) Bactérias e animais.
 - (B) Vegetais e virus.
 - (C) Vegetais e animais.
 - (D) Animais e virus.
 - (E) Bactérias e vírus.

24. Considere as afirmativas

- A reprodução assexuada nos vegetais se dá através da formação de esporos ou pela propagação vegetativa.
- Os animais só se reproduzem por divisão binária.
- Na reprodução assexuada, um único indivíduo dá origem aos seus descendentes.
- A reprodução sexuada geralmente envolve a formação de gametas masculinos e femininos

Quais estão corretas

- (A) Apenas a I, a II e a III.
- (B) Apenas a I, a II e a IV
- (C) Al,all, alllealV.
- (D) Apenas a I, a III e a IV.
- (E) Apenas a IV.
- 25. A alternativa que contém características exclusivas de seres vivos procariontes é
 - (A) Ausência de núcleo e presença de cloroplasto.
 - (B) Incapacidade de síntese protéica e presença de cloroplasto.
 - (C) Ausência de carioteca e capacidade de síntese protéica.
 - (D) Ausência de membrana plasmática e presença de ácidos nucléicos.
 - (E) Presença de ácidos nucléicos e ausência de cloroplastos.
- 26. O fígado tem a capacidade de destruir substâncias tóxicas existentes no sangue, graças à presença de
 - (A) enzimas.
 - (B) etanol.
 - (C) glicídeos.
 - (D) lactato.
 - (E) ácido acético.

, período em que a célula não 27. Na está se dividindo, ocorrem a maioria das reações químicas da célula, incluindo a duplicação de , a síntese de eaprocelulares. ducão de A alternativa que completa corretamente as lacunas, na ordem apresentada, é (B) metáfase, RNA, DNA, organelas. (A) interfase, DNA, RNA, proteínas. (B) (C) interfase, RNA, DNA, glicídeos. metáfase, DNA, RNA, proteínas. (D) interfase, RNA, DNA, organelas. (E) presente no núcleo interfásico 28. A capacidade de aparece durante a divisão celular com uma organização estrutural diferente chamada de (A) (B) A alternativa que completa corretamente as lacu-(C) nas é (D) (E) (A) cromatina, cromátide carioteca, cromossoma (C) cromatina, centriolo (D) carioteca, centrômero cromatina, cromossoma (E) dor Quaternário. 29. O Brasil já está oficialmente incorporado ao Protocolo de Kyoto desde 23 de julho deste ano. O acordo internacional, resultado da reunião da Conferência das Partes no Japão, em 1997, inclui a redu-(A) Produtor ção das quantidades de emissão de 6 tipos de (B) gases, dentre eles CO,. Hoje, sabemos que a mai-

or parte da energia utilizada no planeta é proveni-

O excesso da queima de combustíveis fósseis pode

resfriamento global e incidência de câncer

diminuição da temperatura global e aumen-

aumento do efeito estufa e dos níveis dos

destruição da camada de ozônio e a dimi-

ente da queima de combustíveis fósseis.

to dos níveis dos oceanos.

nuição do efeito estufa.

diminuição do efeito estufa.

ter como consequência

de pele.

oceanos.

(B)

(C)

(E)

- 30. Em um laboratório foi analisado o sangue dos pais de uma criança. Verificou-se que os grupos sangüíneos eram do tipo O e AB (sistema ABO). O grupo sangüíneo da criança
 - poderá ser A, B ou AB.
 - poderá ser A, B, AB ou O.
 - poderá ser um dos genitores.
 - será do grupo A ou B.
 - é imprevisível.
- 31. Sabe-se que certas bactérias vivem em simbiose com as raízes das leguminosas, o que reflete sua
 - secretar ferro para a planta.
 - fixar nitrogênio do ar.
 - captar oxigênio do ar.
 - secretar fósforo no solo.
 - captar água do solo.
- 32. Analise a seguinte sequência:

Produtor → Consumidor Primário → Consumidor Secundário → Consumidor Terciário → Consumi-

Qual o ser que menos energia perde para o ambien-

- Consumidor Primário
- Consumidor Secundário
- (D) Consumidor Terciário
- Consumidor Quaternário

l. Parte da energia que flui num ecossistema é dissipada como calor. II. Nos ecossistemas a energia diminui a media que aumenta o nivel trófico. III. A energia flui unidirecionalmente nos ecossistemas. Estão corretas: (A) Apenas a l. (B) Apenas a l e a II. (C) Apenas a I e a III. (D) Apenas a I e a III. (E) Al, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecidos nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio	3. Cons	idere as seguintes afirmativas	R	Α	S	С	U	Ν	Н	
dida que aumenta o nivel trófico. III. A energia flui unidirecionalmente nos ecossistemas. Estão corretas: (A) Apenas a I. (B) Apenas a I e a II. (C) Apenas a I e a III. (D) Apenas a I e a III. (E) AI, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio	1.		1919							
ecossistemas. Estão corretas: (A) Apenas a I. (B) Apenas a I e a III. (C) Apenas a I e a III. (D) Apenas a I e a III. (E) AI, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipídio	II.									
(A) Apenas a I. (B) Apenas a I e a III. (C) Apenas a I e a III. (D) Apenas a II e a III. (E) A I, a II e a III. 4. Conforme a segunda lei de Mendel qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipídio	III.									
(B) Apenas a I e a III. (C) Apenas a I e a III. (D) Apenas a I e a III. (E) A I, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio	Estã	o corretas:								
(B) Apenas a I e a III. (C) Apenas a I e a III. (D) Apenas a I e a III. (E) A I, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio	(A)	Apenas a I.	8							
(C) Apenas a I e a III. (D) Apenas a II e a III. (E) A I, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio	1000									
(D) Apenas a II e a III. (E) A I, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio										
(E) A I, a II e a III. 4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicídio (C) aminoácido (D) água (E) lipídio										
4. Conforme a segunda lei de Mendel, qual a proporção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicidio (C) aminoácido (D) água (E) lipidio										
ção esperada de homozigotos dominantes na descendência do cruzamento de dois duploheterozigotos? (A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicídio (C) aminoácido (D) água (E) lipídio	(=)	71,41104111								
(B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteina (B) glicídio (C) aminoácido (D) água (E) lipídio	ção	esperada de homozigotos dominantes na des- dência do cruzamento de dois duplo-								
(C) 1/8 (D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicidio (C) aminoácido (D) água (E) lipídio	(A)	1/2								
(D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicídio (C) aminoácido (D) água (E) lipídio	(B)	1/4								
(D) 1/16 (E) 1/32 5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicídio (C) aminoácido (D) água (E) lipídio	(C)	1/8								
5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicidio (C) aminoácido (D) água (E) lipídio		1/16								
5. Os tecidos de grande atividade metabólica (o tecido nervoso por exemplo) apresentam maior quantidade de (A) proteína (B) glicidio (C) aminoácido (D) água (E) lipídio		1/32								
(B) glicidio (C) aminoácido (D) água (E) lipídio	do no dade	ervoso por exemplo) apresentam maior quanti- e de	PP III							
(C) aminoácido (D) água (E) lipídio			100							
(E) lipídio		9	1							
(E) lipídio										
	(E)	ipidio								
A second tensor to the second tensor to the second tensor										
A process of the contract of t										
(A) Special based of the control of										
All speciments and the second of the second										
En anni de ann										
Comment of Process (Comment of Process (Commen										
The second of the second control of the seco										

QUÍMICA

1				Co	m mas	ssas a	tômica	as refe	ÓDIO ridas a	ao isói	topo 1	2 do C	arbon	0			18
1 H 1.01	2											13	14	15	16	17	2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3	3	4	5	6	7	8	9	10	11	12	13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.5	18 Ar 39.9
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.4	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.8	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc (99)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Sene dos Lantani- dios	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (233)	88 Ra (226)	89 -103 Série dos Actividos	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 Uun (267)								
			Série d	os Lantar	idlos												
Número Simbo			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (147)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
Massa Atómica			Série d	os Actinic	tios												
	e massa do mais estáve		89 Ac (227)	90 Th (232)	91 Pa (231)	92 U 238	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (253)	103 Lr (257)

- Com relação às propriedades periódicas, considere as seguintes afirmações.
 - Os elementos localizados à direita e acima, na classificação periódica, são os que apresentam maiores raios atômicos.
 - II. Os metais dos grupos 1 e 2 possuem grande facilidade para doar elétrons e, conseqüentemente, apresentam elevados potenciais de ionização.
 - III. Os halogênios (grupo 17) são os elementos químicos com maior eletroafinidade.
 - IV. Os não-metais, quando comparados aos metais, são elementos que apresentam menores raios atômicos e tendência para formarem ânions.

Quais são as afirmações corretas?

- (A) Apenas a le a II.
- (B) Apenas a I, a II e a III.
- (C) Apenas a II, a III e a IV.
- (D) Apenas a II e a IV.
- (E) Apenas a III e a IV.

37. Considere os seguintes compostos covalentes:

HCI, H,O e CO,.

Levando em consideração as ligações estabelecidas na formação das moléculas e a sua geometria, pode-se afirmar:

- (A) No HC1, encontra-se ligação covalente apolar e a molécula é linear.
- (B) Na H₂O, as ligações são covalentes apolares e a molécula é angular.
- (C) No CO₂, encontram-se ligações covalentes não polarizadas e a molécula é linear.
- (D) HC1 e CO₂ são moléculas com ligações covalentes polares e geometria linear.
- (E) H₂O e CO₂ são moléculas com ligações covalentes apolares e geometria angular.

- Com relação à polaridade molecular e às forças intermoleculares, considere as seguintes afirmações.
 - Existem moléculas com ligações polarizadas que são apolares.
 - ll. As forças intermoleculares, nas moléculas de C_3H_s (gás propano) e N_2 (gás nitrogênio), são do tipo Van der Waals.
 - III. As moléculas de H₂O entre si e as moléculas de NH₃, entre si, ambas no estado líquido, estabelecem forças do tipo pontes de hidrogênio.
 - IV. A molécula do gás amoníaco (NH₃) apresenta um momento dipolar resultante diferente de zero, logo ela é polar.

Quais são as afirmações corretas?

- (A) Apenas a I e a II.
- (B) Apenas a I, a III e a IV.
- (C) Apenas a II e a III.
- (D) Apenas a II, a III e a IV.
- (E) AI, aII, aIII ealV.
- O óxido que reage com água produzindo ácido, e com base formando sal e água é
 - (A) K,O
 - (B) H,O,
 - (C) SO,
 - (D) MnO
 - (E) MgO
- 40. Considere as seguintes reações químicas.

III.
$$H_2S + 2KOH \rightarrow K_2S + 2H_2O$$

São de simples troca e de decomposição, respectivamente,

- (A) apenas a I e a II.
- (B) apenas a I e a III.
- (C) apenas a II e a III.
- (D) apenas a II e a IV.
- (E) apenas a III e a IV.

41.	Considere	a seguinte	equação	química.
-----	-----------	------------	---------	----------

 $Ca(OH)_2 + H_2SO_3 \rightarrow CaSO_3 + 2H_2O$

Usando-se 8.2~g de H_2SO_3 e quantidade suficiente de $Ca(\mathrm{OH})_2$, para um rendimento de 90% do processo, deverá obter-se

- (A) 5,4 g de CaSO,
- (B) 10,8 g de CaSO,
- (C) 12,0 g de CaSO,
- (D) 108,0 g de CaSO,
- (E) 120,0 g de CaSO,

42. A quantidade de álcool etílico presente em bebidas alcoólicas é expressa em percentagem volumétrica. Nas garrafas de cerveja, por exemplo, o teor expresso de álcool é 6%. Uma pessoa, ao consumir o volume de 660 mL, que corresponde ao volume de uma garrafa, estará ingerindo um volume de álcool igual a

- (A) 0,9 mL.
- (B) 1,1 mL.
- (C) 3,96 mL.
- (D) 39,6 mL.
- (E) 110 mL.
- Para condimentar uma salada foi preparado um tempero utilizando-se duas partes de vinagre para uma parte de água.

Sabendo-se que a quantidade de ácido acético em 1 L de vinagre corresponde a 0,7 mol/L, pode-se afirmar que a concentração molar do tempero preparado corresponde a aproximadamente

- (A) 0,17 mol/L.
- (B) 0,23 mol/L.
- (C) 0,35 mol/L.
- (D) .0,47 mol/L.
- (E) 0,52 mol/L.

Para uma prática laboratorial foi necessária a preparação de uma solução de hidróxido de sódio (NaOH) 0,2 mol/L.

A massa de reagente necessária para preparar-se 500 mL desta solução é

- (A) 2,0 g.
- (B) 4,0 g.
- (C) 6,0 g.
- (D) 8,0 g.
- (E) 16,0 g.

U

C

S

N

H

45. A força eletromotriz (fem) de uma pilha pode ser calculada através da sua reação global, que é a soma das semi-reações de oxidação e redução, ou seja, C

U

0

н

 $\Delta \epsilon = \epsilon_{oxi} + \epsilon_{red}$

Sabendo-se disso, deve-se afirmar que a fem de uma pilha construída com eletrodos de niquel $(\epsilon_{\text{redução}} = -0.25 \text{ V})$ e de zinco $(\epsilon_{\text{redução}} = -0.76 \text{ V})$ é

- (A) -1,01 V.
- (B) -0,51 V.
- (C) 0,00 V.
- (D) +0,25 V.
- (E) +0,51 V.
- 46. O carbonato de cálcio é o maior componente do calcário, mineral muito utilizado na correção da acidez do solo e na construção civil. Seu aquecimento leva à obtenção de cal virgem (CaO) segundo a reação

 $CaCO_{3(s)} \xrightarrow{\Delta H = +178 \text{ kJ}} CaO_{(s)} + CO_{2(g)}$

Sobre esta reação são feitas as seguintes afirmações

- Processo de formação de cal é endotérmico.
- Aumentando a pressão de CO₂ no sistema, o equilíbrio será deslocado no sentido de formação do produto.
- O processo ocorre com liberação de energia.
- A variação de energia de ativação do sistema é 178kJ.

Quais são as afirmações corretas?

- (A) Apenas a I.
- (B) Apenas a III.
- (C) Apenas a I e a II.
- (D) Apenas a II e a III.
- (E) Apenas a II, a III e a IV.

UFRGS/Escola Técnica - Exame de Seleção 2003/1

Substância	Ponto de fusão (°C)	Ponto de ebulição (°C)
Etanal	-123	20
Hexano	6,3	80
Estanho	231	2270
Etanol	-114	78,3

R

- 47. Com base nos dados constantes no quadro acima, obtidos à pressão de 1 atmosfera, quais são as substâncias que se encontrarão no estado gasoso na temperatura de 25°C?
 - (A) O etanal e o etanol.
 - (B) O hexano e o estanho.
 - (C) Apenas o etanal.
 - (D) Apenas o etanol.
 - (E) Apenas o hexano.
- **48.** A destilação é uma das operações utilizadas para a separação de substâncias.

O processo baseia-se nas diferenças que as substâncias apresentam em

- (A) suas densidades.
- (B) seus coeficientes de solublidade.
- (C) seus pontos de fusão.
- (D) seus pontos de ebulição.
- (E) suas viscosidades.
- 49. As colunas abaixo apresentam diferentes substâncias que devem ser relacionadas com suas respectivas funções.

Substância	Função
1. Butano	A. Álcool
2. n-Butanol	B. Aldeído
3. Butanal	 C. Hidrocarboneto
4. Butanoato de butila	D. Cetona
5. Butanona	E. Éster

A alternativa que apresenta a associação correta é

- (A) 1-A, 2-B, 3-C, 4-D, 5-E.
- (B) 1-B, 2-A, 3-D, 4-E, 5-C.
- (C) 1-C, 2-A, 3-B, 4-E, 5-D
- (D) 1-C, 2-B, 3-D, 4-D, 5-C.
- (E) 1-D, 2-C, 3-B, 4-A, 5-E.

0

50. A cadeia carbônica do composto

СН₃- СН₂-СН₂-СН₂-СН₂-С

С

s

U

N

pode ser classificada como

- (A) normal, homogênea, saturada, alifática.
- (B) normal, homogênea, insaturada, alifática.
- (C) normal, heterogênea, insaturada, aromática.
- (D) ramificada, heterogênaea, insaturada, alifática.
- (E) ramificada, homogênea, saturada, alifática.

	R
	A
	s
	С
	U
	N
	— H
	P
	A
	R
	A
	_
	R
	E
	D
	—— A
	С
	O
A COMPANY OF THE PROPERTY OF T	
E. Ministra	
The state of the s	
	and the second